Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Chem Commun (Camb) ; 57(55): 6804-6807, 2021 Jul 08.
Article in English | MEDLINE | ID: covidwho-1284708

ABSTRACT

Glycosylation plays important roles in SARS-CoV-2 infection. We describe here a facile chemoenzymatic synthesis of core-fucosylated N-glycopeptides derived from the SARS-CoV-2 Spike protein and their binding with glycan-dependent neutralizing antibody S309 and human lectin CLEC4G. The synthetic glycopeptides provide tools for further functional characterization of viral glycosylation.


Subject(s)
Glycopeptides/chemical synthesis , Glycopeptides/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Neutralizing/immunology , Chemistry Techniques, Synthetic , Glycopeptides/chemistry , Glycopeptides/immunology , Glycosylation , Polysaccharides/metabolism
2.
Glycobiology ; 31(1): 69-80, 2021 01 09.
Article in English | MEDLINE | ID: covidwho-592209

ABSTRACT

Coronaviruses hijack human enzymes to assemble the sugar coat on their spike glycoproteins. The mechanisms by which human antibodies may recognize the antigenic viral peptide epitopes hidden by the sugar coat are unknown. Glycosylation by insect cells differs from the native form produced in human cells, but insect cell-derived influenza vaccines have been approved by the US Food and Drug Administration. In this study, we analyzed recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein secreted from BTI-Tn-5B1-4 insect cells, by trypsin and chymotrypsin digestion followed by mass spectrometry analysis. We acquired tandem mass spectrometry (MS/MS) spectrums for glycopeptides of all 22 predicted N-glycosylated sites. We further analyzed the surface accessibility of spike proteins according to cryogenic electron microscopy and homolog-modeled structures and available antibodies that bind to SARS-CoV-1. All 22 N-glycosylated sites of SARS-CoV-2 are modified by high-mannose N-glycans. MS/MS fragmentation clearly established the glycopeptide identities. Electron densities of glycans cover most of the spike receptor-binding domain of SARS-CoV-2, except YQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQ, similar to a region FSPDGKPCTPPALNCYWPLNDYGFYTTTGIGYQ in SARS-CoV-1. Other surface-exposed domains include those located on central helix, connecting region, heptad repeats and N-terminal domain. Because the majority of antibody paratopes bind to the peptide portion with or without sugar modification, we propose a snake-catching model for predicted paratopes: a minimal length of peptide is first clamped by a paratope and sugar modifications close to the peptide either strengthen or do not hinder the binding.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19/therapy , Glycopeptides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Amino Acid Motifs , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , COVID-19/immunology , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Glycopeptides/chemistry , Glycopeptides/immunology , Humans , Immunization, Passive , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Serotherapy
3.
Science ; 369(6501): 330-333, 2020 07 17.
Article in English | MEDLINE | ID: covidwho-187772

ABSTRACT

The emergence of the betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), represents a considerable threat to global human health. Vaccine development is focused on the principal target of the humoral immune response, the spike (S) glycoprotein, which mediates cell entry and membrane fusion. The SARS-CoV-2 S gene encodes 22 N-linked glycan sequons per protomer, which likely play a role in protein folding and immune evasion. Here, using a site-specific mass spectrometric approach, we reveal the glycan structures on a recombinant SARS-CoV-2 S immunogen. This analysis enables mapping of the glycan-processing states across the trimeric viral spike. We show how SARS-CoV-2 S glycans differ from typical host glycan processing, which may have implications in viral pathobiology and vaccine design.


Subject(s)
Betacoronavirus/chemistry , Polysaccharides/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Binding Sites , COVID-19 , Coronavirus Infections , Glycopeptides/chemistry , Glycopeptides/immunology , Glycosylation , Humans , Mass Spectrometry , Models, Molecular , Oligosaccharides/chemistry , Pandemics , Pneumonia, Viral , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL